Ph.D. in Education: Human-Technology Collaboration Concentration

From getting customized news headlines on our phone or individualized learning content in online courses, to using ride sharing apps for getting to work or guiding blind people as they run marathons, intelligent technologies (derived from data sciences, machine learning, predictive analytics, artificial intelligence, natural language processing, and other advances) are transforming our daily lives. Recognizing this continued expansion of technology and computational thinking in our classrooms and workplaces, the George Washington University is offering a dynamic PhD concentration in Human-Technology Collaboration. Drawing upon faculty and experts from education, data science, engineering, psychology, business, public health, and medical informatics, the PhD takes an interdisciplinary approach to education and research into how the collaborations of people and machines shape the future.

Being prepared to create, train, interact, and collaborate with intelligent technologies is an immediate challenge in the preparation of the global workforce. All of us must develop new skills and effective strategies to ask the right questions, interpret data analytics, apply data to improving performance, assess machine uncertainty, make ethical and policy judgments that integrate both data and social values, and find new collaborative ways that engage technologies as our partners in learning and work.

Preparing for data intensive environments powered by intelligent technologies requires research-based approaches to answering these and other questions:

  • How can educational institutions and private sector organizations collaborate in preparing a workforce for increasing collaborations with intelligent technologies?
  • How do varying levels of algorithm transparency influence the application of those algorithmic outputs in the decisions being made in the workplace?
  • What factors lead to faster and deeper learning in virtual reality training environments?
  • Which grounded instructional strategies are most effective for teaching critical and computational thinking skills to students of all ages?
  • How can data visualization improve the efficiency of professionals (e.g., lawyers, teachers, nurses, engineers, school administrators) in interpreting predictive data outputs?
  • What variables do people consider when trusting machines that make mistakes, or when machines are not certain about their uncertainty?
  • What are the policy and ethical implications of algorithm design, transparency, and accountability within a learning analytics context?
  • Is there a balance of human intuition and machine learning automation that best facilitates creative design while also fully leveraging analytical capability?
  • How do team dynamics and collective intelligence change when intelligent machines are team members?

Apply to the program and join the vanguard exploring the frontiers of Human-Technology Collaboration. Learn more about news and other related events regarding the program by visiting GW's Human-Technology Collaboration Research Lab website.



  • Degree: Master’s degree in a field relevant to cross-disciplinary study and research in the area of Human-Technology Collaboration
  • Transcripts: Official transcripts from every institution attended whether or not a degree was completed; graduate and undergraduate. The concentration goal is an average GPA of at least 3.7 in previous undergraduate and graduate programs.
  • Recommendations: Three (3) letters of recommendation, with one preferred from a professor in the applicant’s Master’s degree program. Letters will document potential for analytical thinking, research skills/experiences, scholarly writing capabilities, and capacity to explore cross-disciplinary/complex issues.
  • Statement of Purpose: An essay of less than 1200 words, in which the candidate states his/her purpose in undertaking cross-disciplinary graduate study including: (a) rationale for seeking a Ph.D. in the specified concentration; (b) articulation of personal research interests; and (c) how his/her background and related qualifications have prepared him/her for this work and will align with long term goals. Please list your specified concentration at the top of your statement of purpose.
  • Curriculum Vitae
  • Writing Requirement (Optional): Candidates are encouraged to submit a current writing sample. The sample should reflect the candidate’s abilities to articulate complex ideas and to utilize evidence in support of his/her arguments. The writing sample should also provide an example of the candidate’s research skills, as well as her/his engagement with scholarship in pursuing his/her research interests.
  • Interview: Interview by faculty to include a scholarly discussion of how the candidate’s work will fit with the proposed topic of the concentration.

Please note: The GRE is not required.

*Additional application requirements may exist for international applicants

For more information on any of these requirements, please visit our Admissions FAQ page.


Applications are currently being accepted on a case-by-case basis. 

For more information, contact the GSEHD Admissions Team at or 202-994-9283.

Apply Now   



Required courses in Educational Foundations (12 credits)

SEHD 8200 Foundations of Education I
SEHD 8201 Foundations of Education II
SEHD 8100 Special Topics (taken twice for a total of 6 credits)

Human-Technology Collaboration Concentration Requirements (24 credits)

24 credits in graduate-level courses determined in consultation with the advisor. Course selections are determined by the focus of the concentration and the specific interests of the student.

Research Methods (12 credits)

12 credits of doctoral-level research methods coursework, selected in consultation with advisor. At least one course must be in quantitative research methods and one in qualitative research methods.

Dissertation (12 credits)

SEHD 8999 Dissertation Research (taken for at least 12 credits)

Additional Requirements

  • Successful completion of second-year research project.
  • Successful completion of the comprehensive examination.
  • Oral defense of both the dissertation proposal and the dissertation.

Total = 60 Credits


Open Science

The CRT is dedicated to the principles and practice of open science for accelerating scientific progress. The concentration supports the development of research and analysis that is widely available for peer feedback and potential replication or reproduction. The sharing of collaborative and student research is encouraged at all phases from conceptualization and design to publication and dissemination. Replication studies, preregistration of research proposals, open sharing of data and code, and the preprinting of publications are among the tools used within the concentration to open our science.


Corry, Michael Professor, Educational Technology
Medsker, Larry Research Professor, Human-Technology Collaboration Concentration
Milman, Natalie B. Professor, Educational Technology
Nakamura, Yoshie Tomozumi Assistant Professor, Human and Organizational Learning
Scully-Russ, Ellen Associate Professor, Human and Organizational Learning
Watkins, Ryan Professor and Director, Educational Technology Leadership Program

Additional Faculty

Columbian College of Arts and Sciences

Behrend, Tara
Associate Professor, Industrial-Organizational Psychology | 202.994.3789

Sarah Shomstein
Professor, Cognitive Neuroscience | 202.994.5957

Milken Institute School of Public Health

Helmchen, Lorens
Associate Professor, Health Policy and Management | 202.994.3816

School of Business

Hill, Sharon
Associate Professor of Management | 202.994.1314

School of Engineering and Applied Sciences

Barba, Lorena
Associate Professor, Mechanical and Aerospace Engineering | 202.994.3715

Broniatowski, David
Assistant Professor, Engineering Management and Systems Engineering | 202.994.3751

School of Medicine and Health Sciences

Morizono, Hiroki
Associate Research Professor, Genomics and Precision Medicine

Request Information

Learn more about the Doctorate in Education: Human-Technology Collaboration Concentration located on campus. Complete the form linked below or contact the GSEHD Admissions Team at 202-994-9283.

Request Information